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Inflammatory bowel disease (IBD) has become a major health challenge worldwide. However, the precise etiological and
pathophysiological factors involved in IBD remain unclear. Proteomics can be used for large-scale protein identification analysis. In
the current study, using tandemmass tag- (TMT-) based shotgun proteomics, proteomic differences between intestinal tissue from
health controls, patients with Crohn’s disease (CD), and patients with ulcerative colitis (UC) were compared. Proteins with fold
change >2 or <0.5 and P value < 0.05 between groups were considered differentially expressed. ProteinAtlas was used to analyze the
tissue specificity of differentially expressed proteins (DEPs). Reactome pathway analysis was applied to cluster functional pathways.
A total of 4786 proteins were identified, with 59 proteins showing higher levels and 43 showing lower levels in patients with IBD
than in controls. Seventeen proteins, including angiotensin converting enzyme 2 (ACE2) and angiotensin converting enzyme 1
(ACE), showed higher levels in CD than in UC. Several novel proteins such as CD38, chitinase 3-like 1 (CHI3L1), olfactomedin
4 (OLFM4), and intelectin 1 were screened out between patients with IBD and controls. When proteins with fold change >1.2 or
<0.84 and P value < 0.05 between groups were considered differentially expressed, the expression of 10 proteins, including CD38,
involved in the nicotinamide adenine dinucleotide (NAD) metabolism and signaling pathway showed significant changes in IBD.
Using the NCBI GEO database, we confirmed increased CD38 mRNA expression in patients with UC and in mouse colitis models.
Protein CD38 expression was higher in CD and UC than in normal controls. CD38 expression was higher in inflamed tissues than
in noninflamed tissues, and CD38 was located in F4/80-positive cells. Our study may provide novel insights into the molecular
pathogenesis of IBD. Further studies are required on the role of NAD metabolism and CD38 in intestinal inflammation.

1. Introduction

Inflammatory bowel disease (IBD) is categorized into Crohn’s
disease (CD) and ulcerative colitis (UC), which are char-
acterized by relapsing chronic colitis in the gastrointestinal
tract. An estimated 2.5 million people are affected by IBD in
Europe [1]. In Asia, although the prevalence of IBD is lower
than that in Europe, it has rapidly increased over the last
decade [2, 3].Thus, IBD has become amajor health challenge
worldwide. However, the precise etiological factors of IBD
remain unclear. Currently, IBD is thought to result from

interplay between environmental factors and host genetics,
leading to persistent gastrointestinal immune activation [4,
5].

Various inflammatory molecules, including cytokines,
chemokines, and danger-associated molecular patterns
(DAMPs), are released from infiltrating inflammatory cells
[4], and drugs targeting these inflammatory molecules are
developed as therapeutics for IBD treatment [6]. Tumor
necrosis factor-𝛼 (TNF-𝛼) inhibitors are now the most
commonly prescribed biologic therapeutics for patients with
IBD. Other new therapeutic concepts such as Janus kinase
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(JAK) inhibitors, antiadhesion molecules, and anti-Smad7
have shown promising results in current clinical trials [7–9].
Much of the recent research in IBD has been focused on
identifying novel molecules that may be therapeutic targets.

Currently, IBDdiagnosis depends on clinical, endoscopic,
radiographic, and laboratory findings. The differential diag-
nosis of CD and UC is clear in most cases; however, it
is difficult to determine in an estimated 15% of patients
because of atypical findings [10, 11]. Accurate diagnosis of
IBD and differential diagnosis between UC and CD are
essential for ensuring appropriate therapeutic intervention
and surveillance [12]. Serological markers, especially per-
inuclear antineutrophil cytoplasmic antibodies (pANCAs)
and anti–Saccharomyces cerevisiae antibodies (ASCAs), aid
in differentiating UC from CD [13]; however, the sensitivity
of this test is relatively low [14]. Histological biomarkers for
this differential diagnosis are notwell understood. Identifying
molecules differentially expressed between CD and UC may
help uncover the differences in their pathogenesis.

Proteomics helps provide novel strategies for large-scale
protein identification analysis and valuable insights into dis-
ease pathophysiology. In the past decade, proteomic inquiries
have helped uncover numerous host proteins and pathways
related to IBD pathogenesis. Utilizing matrix-assisted laser
desorption/ionization (MALDI)–time-of-flight (TOF) mass
spectrometry (MS), Anna et al. [15] identified annexin A2
and programmed cell death protein 8 as being involved in
the destruction of intestinal epithelial cell (IEC) homeostasis
in UC. Zhao et al. [16] identified the p38 mitogen-activated
protein kinase (MAPK) pathway as a molecular signature
in UC. Moreover, serum proteomic panels have been used
to differentiate CD from UC [17], to predict disease activity
[18], and to evaluate response to infliximab (IFX) therapy
[19]. In the current study, we aimed to identify potential
proteins involved in IBDpathophysiology and to compare the
proteomic differences between CD and UC by using tandem
mass tag- (TMT-) based quantitative proteomics in order
to identify novel proteins that may be associated with the
pathogenesis of IBD and differentiation between CD andUC.

2. Materials and Methods

2.1. Sample Collection. The diagnostic criteria for both UC
and CD were based on clinical, endoscopic, and histological
features according to the World Gastroenterology Organiza-
tion Practice Guidelines for IBD diagnosis and management
[20]. For proteomic analysis, patients with CD (n = 9) or UC
(n = 9) were recruited from inpatients of the Department
of Gastroenterology, the First Affiliated Hospital of Zhejiang
University. During colonoscopy, two intestinal tissue biopsy
samples were obtained from the inflamed area. The normal
controls were patients who underwent screening colono-
scopies without active gastrointestinal pathology. Age and
sex-matched normal control patients (n = 6) were recruited,
and samples were obtained from the normal colon tissue
during screening colonoscopy.

The independent groups established for validation were
as follows: surgically resected colon tissues from three control
patients, three patients with CD, and three patients with UC.

For patients with CD or UC, both inflamed and noninflamed
tissue samples were obtained. Information regarding base-
line clinical characteristics was obtained during admission.
Informed consent was obtained from all subjects before
participation. The study protocol conforms to the ethical
guidelines of the 1975 Declaration of Helsinki (6th revision,
2008), as reflected in the approval by the ethics committee of
the First Affiliated Hospital of Zhejiang University School of
Medicine. In all cases, colonoscopy biopsy or resected colon
tissue specimens were rinsed in phosphate-buffered saline
and immediately frozen in liquid nitrogen before storage at
-80∘C.

2.2. Protein Extraction and Digestion. Tissues were homoge-
nized in radioimmunoprecipitation assay (RIPA) lysis buffer
and were centrifuged. Protein concentrations were measured
with the bicinchoninic acid (BCA) assay (Beyotime, Beijing,
China). All sampleswere reducedwith dithiothreitol (10mM)
at 60∘C for 30 min and alkylated with iodoacetamide (30
mM) for 30 min at room temperature in the dark. The pro-
teinswere then incubatedwith cold acetone for 4 h at 0∘C.The
protein pellets were centrifuged at 3000 rpm for 15min at 4∘C
and resuspended in 50 𝜇M triethylammonium bicarbonate
(TEAB). Trypsin (Thermo Fisher Scientific, America) was
added at a 1:50 enzyme: substrate ratio for overnight digestion
at 37∘C. For TMT labeling, 24 samples, each containing 30
𝜇g protein digest, were divided into three TMT experiments.
A common reference sample, created by equal mixing of all
samples, was labeled with TMT-131 and TMT-130C across all
3 TMT experiments. The TMT-labeling design is shown in
Supplementary Table 1.

2.3. Quantitative Proteomic Analysis. TMT-labeled peptides
(Thermo Fisher Scientific) were fractionated using the HPRP
method and desalted before LC-MS/MS analyses. Technical
details regarding instrument parameters and operational pro-
cesses can be found in Supplementary Materials and Meth-
ods. The RAW files acquired were loaded into MaxQuant
(version 1.6.1.0) and searched against the human UniProtKB
database (88,473 sequences, version 09-2015). Andromeda
was used as search engine for the identification of proteins.
The database search was performed using the MS2 reporter
ion mode with the 10plex TMT option. A mass tolerance
of 7 ppm was set for the main database search. Trypsin
with up to two missed cleavages was set. Oxidation (M)
and carbamidomethyl (C) were set as variable and fixed
modifications, respectively. An automatic decoy database
search was performed. A protein level false-discovery rate
(FDR) of 1% was set to filter the results.

For quantitative analysis, the TMT reporter ion intensity
of each protein was first normalized against the median
intensity of all proteins within each sample to correct label-
to-label variations. Subsequently, it was normalized against
the averaged reference ion intensities of 131N and 131C labels
within each run to correct run-to-run variations. At least
two unique peptides were required for protein quantitation.
Proteins with empty values were discarded. Student’s t-test
was performed for each protein between groups with the
Perseus software. Proteins that showed more than twofold
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change (fold change of >2 or <0.5) with P value < 0.05
were considered to show significant differential expression.
When analyzing proteins involved in nicotinamide adenine
dinucleotide (NAD) metabolism and signaling pathways,
proteins that showed more than 1.2-fold change (fold change
of >1.2 or <0.84) were considered to show significant change.
Multivariate principal component analysis (PCA) and heat
maps were used to summarize and visualize sample classifi-
cation on the basis of expression profiles of all proteins.

2.4. Bioinformatics Analysis. ProteinAtlas was used to ana-
lyze the tissue specificity of proteins differentially expressed
between patients with IBD and the controls. Differen-
tially expressed proteins (DEPs) were then divided into 2
groups: gastrointestinal (GI) tissue-specific group (GI tis-
sue types) and GI tissue-nonspecific group (other tissue
types). Subsequently, reactome pathway analysis (https://
www.reactome.org/) was used to cluster the pathways in
which the 2 groups were involved. The pathway analysis
results were visualized using a bubble chart. CD38 gene
expression levels of patients with UC (datasets GDS3119 and
GDS2642) and of mouse colitis models (datasets GDS4363
and GDS3859) were downloaded from the NCBI GEO
database.The expression data were analyzed with the Graph-
Pad Prism 6 software.

2.5. Mouse Model of Dextran Sulfate Sodium Salt-Induced
Colitis. 12 male C57BL/6J mice aged 6–8 weeks were pur-
chased from the Zhejiang Academy of Medical Science. The
mice were orally administered 4% dextran sulfate sodium salt
(DSS; molecular weight: 36,000–50,000; MP Biomedicals,
Santa Ana, CA, USA) in water for 5 days to induce acute
colitis (n = 6/group). Control mice (n = 6/group) were
given drinking water. Body weight and stool consistency
were recorded every day. On the sixth day, the mice were
euthanized with 5% chloral hydrate.The colons were resected
and fixed immediately in 10% formalin and embedded. This
study was performed according to the guidelines of the
animal ethics committee of the First Affiliated Hospital of
Zhejiang University School of Medicine.

2.6. Immunohistochemical Staining. Immunohistochemical
(IHC) staining was performed on paraffin-embedded sec-
tions of patients who had undergone colon resection. Tissues
were cut into 5 𝜇m-thick sections and stained with H&E
before IHC staining. Slides were incubated with primary
antibodies against ITLN1 (ab118232, Abcam) and CD38
(ab108403, Abcam) for humans and CD38 (sc374650, Santa
Cruz) for mice overnight at 4∘C, followed by incubation with
horseradish peroxidase-conjugated anti-IgG for 1 h at 37∘C.
The samples were visualized with 3,3󸀠-diaminobenzidine
(DAB) and observed under a light microscope (Leica, Ger-
many).

2.7. Immunofluorescence Staining. Paraffin-embedded sec-
tions of colon tissues from patients with IBD or controls
were used.The slides were incubatedwith primary antibodies
against CD38 (sc374650, Santa Cruz) and F4/80 (ab16911,

Abcam) at 4∘C overnight. On the next day, the slides were
incubated with sheep anti-mouse Alexa Fluor 488 (DaWen
Biotech, China) and goat anti-rat Cy3 (DaWen Biotech,
China) antibodies at 37∘C for 1 h, followed by incubationwith
4󸀠,6-diamidino-2-phenylindole (DAPI) for 3 min. Images
were obtained using a laser scanning microscope (Olympus,
Japan).

2.8. Western Blot Analysis. Specimens were homogenized in
RIPA buffer and centrifuged at 12,000 rpm for 15 min at
4∘C; subsequently, the supernatants were collected. Proteins
(40 𝜇g) were separated using 10% sodium dodecyl sulfate
(SDS)-polyacrylamide gel electrophoresis (PAGE) gels and
were then transblotted onto 0.45 𝜇m nitrocellulose mem-
branes (Millipore, Merck, Germany). The membranes were
blocked with 5% nonfat milk. Primary antibodies against
CD38 (ab108403, Abcam) and glyceraldehyde 3-phosphate
dehydrogenase (GAPDH; 5174; Cell Signaling Technology)
were used. After incubation with the secondary antibody, the
bands were visualized using an electrochemiluminescence
(ECL) imaging system.

2.9. Statistical Analysis. Experimental data have been
expressed in terms of mean ± standard error of the mean
(SEM) values, and the GraphPad Prism 6 software was used
for comparison between groups. Unpaired Student’s t-test
was used to compare differences between two groups. For
more than 2 groups, analysis of variance (ANOVA) was used.
A two-sided P value <0.05 was considered to be statistically
significant.

3. Results

3.1. Proteins Differentially Expressed between Controls and
Patients with IBD. We enrolled 6 controls, 9 patients with
CD, and 9 patients with UC. Using a protein level FDR of 1%
as a criterion, 5702, 5544, and 5552 proteins were identified
from 3 TMT experiments (Figure 1(a)). A total of 4786
proteins were identified from the 3 experiments; of these, 102
were differentially expressed between patients with IBD and
controls. The proteome between patients with IBD and con-
trols could be clearly separated, as visualized by the PCA plot
(Figure 1(b)) and heat map (Figure 1(c)). Among the DEPs,
59 proteins showed higher expression and 43 showed lower
expression in patients with IBD than in controls (Figure 2(a)).
Seventeen proteins were differentially expressed between
patients with CD and patients with UC (Figure 2(b)). To ana-
lyze the related functions of proteins differentially expressed
between patients with IBD and controls, reactome clustering
pathway analysis was performed. Pathways enriched by DEPs
from other tissues were mainly involved in the immune
system, including the adaptive immune system and processes
such as antigen presentation, interferon alpha/beta signaling,
and the neutrophil degranulation pathway (Figure 2(c)).
Pathways enriched by DEPs from GI tissue types included
the mRNA splicing-major pathway, pyruvate metabolism
and citric acid (TCA) cycle, gene and protein expression

https://www.reactome.org/
https://www.reactome.org/
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Figure 1: Summary of proteomics analysis ofNC,CD, andUCusingTMTquantitationmethod. (a) Venn diagram showing proteins identified
across 3 TMT experiments, from which 4786 commonly identified proteins were used for downstream analyses. (b) Overall differences of
proteome between NC, CD, and UC were summarized by PCA plot. (c) Heat map representation of abundance profiles of all 4786 proteins
in all samples. Color shade correlates with relative protein abundances across each row (red/green for upregulation/downregulation).
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Figure 2: Identification and pathway analysis of DEPs. (a) Volcano map of DEPs between IBD and NC. (b) Volcano map of DEPs between
CD and UC. (c) Reactome pathway analysis of DEPs enriched from no tissue types. (d) Reactome pathway analysis of DEPs enriched from
GI tissue types.

by JAK-STAT signaling after interleukin-12 stimulation, and
apoptosis pathway (Figure 2(d)).

3.2. DEPs according to Disease Subtypes of Inflammatory
Bowel Disease. 102 proteins were significantly dysregulated
in patients with IBD (Figure 2(a)). Of these, several pro-
teins have been used as disease markers. Among them,
lipocalin 2 (LCN2), S100A12, and matrix metallopeptidase 9
(MMP9)were upregulated in bothUCandCD,while S100A8,
S100A9, myeloperoxidase (MPO), and lactotransferrin (LTF)
were upregulated in CD (Supplementary Table 2). Several
novel proteins were also identified (Table 1). Chitinase 3-
like 1 (CHI3L1), CD38 molecule (CD38), and olfactomedin
4 (OLFM4) were upregulated in patients with CD or UC,
whereas intelectin 1 (ITLN1) was downregulated. We also
identified proteins that were differentially expressed between
the two subtypes of IBD.Our results indicated that 17 proteins
were upregulated in CD compared to UC (Figure 2(b)). Some
of the proteins with abundance changes are shown in Table 2;
from these, angiotensin converting enzyme 2 (ACE2) and

angiotensin converting enzyme 1 (ACE) showed significantly
higher expression in CD than in UC.

3.3. NAD Metabolism and Signaling Pathway Showed Alter-
ations in Patients with IBD. Using reactome pathway anal-
ysis, we noted that many proteins are involved in immune
pathways. Previous studies have revealed that CD38 plays
multiple functions in rheumatoid arthritis (RA), allergic
airway disease, andmultiple myeloma and is expressed in the
membrane of immune cells [21–23]. Furthermore, Michael
reported that CD38 is expressed on inflammatory cells of the
intestine and promotes intestinal inflammation [24]. There-
fore, we studied the role of CD38 in IBD. CD38 participates
in the synthesis of cyclic ADP ribose (cADPR) from NAD,
and the NAD metabolism pathway is reported to promote
inflammation in the gut [24, 25]; therefore, we analyzed
our proteomic results for the expression of other molecules
involved in NAD+ metabolism and signaling. Twenty-two
proteins involved in NAD metabolism and signaling were
identified by the proteomic analysis (Table 3). When the
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Table 1: Novel proteins showing abundance changes in CD or UC patients.

UniProt accession Protein UC/Con CD/Con CD/UC Unique peptides GI related or not
Fold change p value Fold change p value Fold change p value

P36222 CHI3L1 3.42 0.0434 3.13 0.0048 0.92 0.7712 4 not
P28907 CD38 2.28 0.0015 2.70 0.0004 1.18 0.2881 9 not
Q6UX06 OLFM4 2.32 0.0779 1.89 0.0030 0.81 0.4557 5 not
Q8WWA0 ITLN1 0.50 0.0048 0.36 0.0000 0.73 0.1718 6 yes
CD, Crohn’s disease. UC, ulcerative colitis. Con, control. GI, gastrointestinal.

fold change level was set at >1.2 or <0.84; 10 of them
showed significant change (Table 3); most of these were
enzymes related to NAD synthesis and cleavage.The role and
expression of these proteins within the NADmetabolism and
signaling pathway are indicated in Figure 3.

3.4. CD38 Expression Increased in Patients with IBD and in the
Mouse Colitis Models. We analyzed CD38 mRNA expression
by using the NCBI GEO database. The expression data in the
GDS3119 database indicated that the inflamed tissues in UC
had higher CD38 expression than the controls (Figure 4(a)).
TheCD38 expression in the inflamed regions was higher than
that in the noninflamed regions (Figures 4(a) and 4(b)). In the
DSS-induced colitis model and T cell transport colitis model,
CD38 expression gradually increased with the emergence of
colitis (Figures 4(c) and 4(d)).

We then analyzedCD38 protein expression in colon spec-
imens frompatientswithCDorUC.CD38protein expression
was higher in patients with CD or UC than in controls
(Figures 5(a) and 5(b)). The CD38 expression in inflamed
regions was higher than that in noninflamed regions (Figures
5(c) and 5(d)). IHC and immunofluorescence (IF) staining
confirmed increased CD38 expression and membrane CD38
distribution (Figures 5(e) and 5(f)). We noted colocalization
of CD38 with the macrophage marker F4/80 (Figure 5(f)).
CD38 protein expression also increased in themicewithDSS-
induced colitis (Supplementary Figure 1).

4. Discussion

Since the first study by Barceló-Batllori et al. [26], who
identified increased indoleamine-2,3-dioxygenase expression
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Figure 4: CD38 mRNA expression in patients with UC and animal colitis models from GEO datasets. (a) Colon mucosa CD38 mRNA
expression in NC, UCI, and UCNI patients based on GEO GDS3319 dataset. (b) Colon mucosa CD38 mRNA expression in UCI and UCNI
patients based on GEO GDS2642 dataset. (c) Colon CD38 mRNA expression in DSS induced mouse colitis model at 0D, 2D, 4D, and 6D
based on GEOGDS3859 dataset. (d) Colon CD38mRNA expression in T cell transfer mouse colitis model at 0W, 4W, and 8W based on GEO
GDS4363 dataset. Significance level: ∗P < 0.05, ∗∗P < 0.01, and ∗ ∗ ∗P < 0.001. NC, normal control; CD, Crohn’s disease; UC, ulcerative
colitis; UCI, ulcerative colitis inflamed; UCNI, ulcerative colitis noninflamed; D, day; W, week.

Table 2: Proteins showing abundance changes between CD and UC patients.

UniProt accession Protein UC/Con CD/Con CD/UC Unique peptides GI related or not
Fold change p value Fold change p value Fold change p value

P05062 ALDOB 1.55 0.1156 8.62 0.0843 5.56 0.0477 17 not
Q9BYF1 ACE2 1.30 0.2869 6.41 0.0575 4.91 0.0274 2 not
P12104 FABP2 1.02 0.9457 4.87 0.0912 4.78 0.0394 9 not
P12821 ACE 1.26 0.0372 3.96 0.0580 3.13 0.0324 12 not
CD, Crohn’s disease. UC, ulcerative colitis. Con, control. GI, gastrointestinal.

in cytokine-treated colon epithelial cells by using proteomics
technology, numerous studies have investigated proteomic
changes in IBD. We previously identified several protein
peaks in relation to serum samples, which were helpful for
differentiating CD from intestinal tuberculosis (ITB) [27].
Isobaric chemical labeling for quantitative proteomics has
better quantification performance and reproducibility than
other proteomic methods [28]. In this study, we employed

TMT-based quantitative proteomics to identify DEPs in
patients with IBD.

We identified several previously reported proteins, such
as S100A8/9, S100A12, LTF, LCN2, andMMP9, most of which
are used to evaluate the disease activity of IBD [29–32]. We
also identified several novel proteins associated with IBD;
CH3L1, CD38, and OLFM4 showed increased levels, whereas
ITLN1 showed decreased levels. Previous DNA microarray
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Table 3: Expression of proteins involved in NAD metabolism and signaling pathway within the proteomic results.

UniProt
accession Protein p value Fold change Unique GI related or not

IBD/Con peptides not
P36222 CD38 0.0030 2.49 9 not
O95544 NADK 0.0768 1.43 5 not
Q4G0N4 NADK2 0.0183 0.82 6 not
Q6IA69 NADSYN1 0.7181 0.97 3 not
C9JF35 NAMPT 0.0084 1.77 14 not
Q6XQN6 NAPRT 0.3029 0.88 14 not
Q9HAN9 NMNAT1 0.112 0.87 3 not
Q96T66 NMNAT3 0.1096 0.79 2 not
P40261 NNMT 0.0013 1.73 6 not
Q13423 NNT 0.0023 0.79 4 yes
Q8TCD5 NT5C 0.1245 0.83 6 not
P49902 NT5C2 0.4623 0.94 4 not
Q9H0P0 NT5C3A 0.0288 0.67 7 not
P21589 NT5E 0.7597 0.92 3 not
Q9BQG2 NUDT12 0.0875 0.82 2 not
P00491 PNP 0.0131 1.34 10 not
Q15274 QPRT 0.1998 1.47 4 not
Q96EB6 SIRT1 0.1482 1.19 2 not
Q8IXQ6 PARP9 0.0038 1.53 9 not
Q460N5 PARP14 0.0013 1.52 12 yes
Q00653 NFKB2 0.0446 1.65 4 not
P19838 NFKB1 0.7749 1.02 11 not
IBD, inflammatory bowel disease. Con, control. GI, gastrointestinal.

analysis has shown that CH3L1 is upregulated in inflamed
mucosa [33]; our result is consistent with these microarray
results. Several studies also revealed that fecal CHI3L1 aids in
predicting the severity and activity of intestinal inflammation
in both pediatric and adult IBD [34, 35]. However, fecal
CHI3L1 analysis has not been analyzed in Asian populations.
OLFM4 protein expression was found to increase by 1.7 folds
in CD and 3.7 folds in UC [36], which is similar to our results.
ITLN1 is a lactoferrin receptor that can recognize microbial
glycans in the intestine [37]. Previous studies revealed that
serum ITLN1 levels decrease in IBD and are negatively
correlated with its disease activity [38]. However, the role of
ITLN1 in IBD pathogenesis is still unclear.

Differential diagnosis between CD and UC is important
for guiding treatment and follow-up. In the current study, we
identified 17 proteins that showed differences in expression
between CD and UC. Among these, ACE2 and ACE showed
much higher expression in patients with CD than in patients
with UC. Both ACE2 and ACE are associated with the devel-
opment of organ fibrosis [39, 40] and CD is characterized by
subepithelial fibrosis in some patients, which might explain
the increased ACE2 and ACE levels in CD. However, the
functions of the proteins identified were unclear and need to
be confirmed in future studies.

Proteomic analysis indicated that the expression of many
proteins involved in NAD metabolism and signaling showed

changes, suggesting that NAD metabolism and signaling are
associated with the gut inflammation noted in IBD. NAD is a
major coenzyme in bioenergetic processes, including oxida-
tive phosphorylation and energy homeostasis [41]. NAD is
also the substrate for NAD-cleaving enzymes such as poly
(ADP-ribose) polymerases (PARPs), sirtuins (SIRTs), and
cADP-ribose synthases such as CD38 [42–44]. NAD cleav-
age by these enzymes is important for many physiological
processes. NAD synthesis consists of two pathways, the de
novo synthesis pathway and salvage synthesis pathway, with
the latter playing an important role in mammals. In the
salvage pathway, NAMPT is the key enzyme catalyzing NAD
synthesis. A previous proteomic study revealed that NAMPT
levels increase in the inflamed colonic mucosa of patients
with IBD [45], which was also confirmed by our study.
Romana et al. reported that the NAMPT inhibitor FK866
alleviates the PARP/SIRT-mediated inflammatory response
and alters macrophage polarization in DSS-induced colitis
in mice [25]. NAMPT inhibition leads to decreased CD38+
immune cell infiltration into the inflamed colon. However,
the roles of the other enzymes identified by our study in the
pathogenesis of colitis are not clear.

The CD38 expression level has been further confirmed by
validation studies. CD38 is an ectoenzyme that catalyzes the
synthesis of cADPR and NAADP from NAD+ [46]. CD38-
cADPR signaling can mediate airway hyperresponsiveness
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Figure 5: CD38 is increased in IBD patients. (a) Western blot analysis of CD38 expression in control and UC patients (N=3 per group). (b)
Western blot analysis of CD38 expression in 3 matched pairs of inflamed (I) and noninflamed (NI) UC tissues. (c) Western blot analysis of
CD38 expression in control and CD patients (N=3 per group). (d)Western blot analysis of CD38 expression in 3matched pairs of inflamed (I)
and noninflamed (NI) CD tissues. (e) Expression of CD38 by IHC (original magnification×100). (f) Immunofluorescence staining of DAPI
(blue), CD38 (green), and F4/80 (red) in control, UC, and CD patients (N=3 per group) (original magnification, ×200). CD, Crohn’s disease;
UC, ulcerative colitis.

by increasing calcium release in airway smooth muscle cells
[22]. CD38 is also involved in multiple myeloma; antibodies
against CD38, including daratumumab and MOR202, are
promising therapeutics for multiple myeloma [23]. Using
microarray analysis, Chang et al. [21] found that CD38
increased in RA synovial tissues. Recently, a study using
RNA sequencing also revealed that CD38 was significantly
upregulated in the synovial tissue of patients with RA at
various stages [47]. Furthermore, their ex vivo experiments
showed that daratumumab effectively depletes plasma cells
in peripheral blood mononuclear cells (PBMCs) and that
CD38 inhibition can be a novel treatment option for both
RA and systemic lupus erythematosus (SLE). CD38−/− mice
have shown decreased immune cell infiltration and mild
colitis symptoms uponDSS treatment [24]. Shu et al. reported
that CD38 expression increased in macrophages upon LPS
stimulation and CD38 suppression inhibited macrophageM1
polarization and activation of nuclear factor-𝜅B (NF-𝜅B) sig-
naling [48], suggesting that CD38 expression inmacrophages
is proinflammatory. Our results showed that CD38 was

localized in F4/80+ macrophages; however, we could not
exclude the distribution of CD38 within other cell types.
The molecular mechanisms underlying the effect of CD38 in
intestinal macrophages in colitis require further research.

5. Conclusion

Using TMT proteomic quantification, the current study
identified proteins that were differentially expressed between
patients with IBD and controls. We found that proteins
involved in the NAD metabolism and signaling pathway
showed significant alterations in IBD; of these, the expression
of CD38 was validated. Further studies are required to clarify
the mechanisms underlying the promotion of intestinal
inflammation by CD38 and to determine whether CD38
inhibition can be used as a treatment option for IBD.
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